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CALCULATIONS OF LAMINAR HEAT TRANSFER AROUND CYLINDERS OF;ARBITRARY
CROSS SECTION AND TRANSPIRATION-COOLED WALLS WITH
APPLICATION TO TURBINE BLADE COOLING:*

By E. R. G. EorerT and J. N. B. LiviNgoop

SUMMARY

[" An approzimate method for the development of flow and
thermal boundary layers in the laminar region on cylinders
with arbitrary cross section and transpiration-cooled walls is
obtained by the use of Karman's integrated momentum equaiion
and an analogous heat-flow egquation. Incompressible flow
with constant property values throughout the boundary layer is
assumed. The velocity and temperature profiles within the
boundary layer are approximated by expressions composed of
irigonometric functions. Shape parameters for these profiles
and functions necessary for the solution of the boundary-layer
equations are presented as graphs so that the caleulation for
any spectfic case is reduced to the solution of two first-order
differential equations.

The method 1is applied to determine local heat-transfer
coefficients and surface temperatures in the laminar flow region
of the transpiration-cooled turbine blades for a given coolant
flow rate, or to calculate the coolant flow distribution which is
necessary in order to keep the blade temperature uniform along
the surface;

INTRODUCTION

Transpiration cooling is a very effective means for keeping
surfaces that are subject to a hot gas stream at a low tem-
perature. Xor use of this method, the surface is fabricated
from a porous material and a cooling fluid is blown through
the pores. Along the outside surface the cooling fluid builds
o film that insulates the wall from the hot gas stream. The
transpiration-cooling method may be applied to the cooling
of structural parts in propulsion systems such as gas-turbine
blades, combustion-chamber walls, and .rocket nozzles. If
8 heated fluid is blown through the porous wall, the same
method may be used to keep the surface temperature of the
wall at & value that is higher than the temperature in the
outside flow. In this way, the method may be applied in
de-icing of wings or other perts of airplanes and in the pro-
pulsion system.

This report presents a method by which the heat transfer
connected with transpiration cooling in two-dimensional
laminar flow around bodies of arbitrary cross section can be
coleculated. It considers only the case where the fluid
blown through the porous wall is the same as the one in the
outside flow. Although the particular application con-

sidered in this report is the cooling of turbine blades, the
method itself may be applied to other applications as well.
The procedure by which the calculation may be carried out
for any particular application is described in an appendix
of this report.

The determination of the heat transfer is based on the
calculation of the thermal boundary layer which builds up
ground any body in & flow field. This thermal boundary
layer is interconnected with the flow boundary layer for
variable fluid properties dependent on temperature or super-
imposed on the velocity boundary layer when the properties
are independent of temperature. The build-up of the flow
boundery layer is determined by the pressure distribution
around the body under comsideration. For the type of
pressure distribution occurring in the aforementioned applica-
tions, only approximate methods of calculation are direct
enough for engineering purposes. For the determination of
the thermal boundary layer in particular, two types of ap-
proach are known.

The first approach was introduced by Kroujiline for the
calculation of heat transfer on solid surfaces and presented
in more detail by Frosling and others (ref. 1). In this meth-
od, the flow boundary layer has to be known before the ther-
mal boundary layer can be calculated.

Usually a method such as that introduced by von Kérmgén
(vef. 2) or Pohlhausen (ref. 3), which fulfills the integrated
momentum equation of the boundary layer, is applied for
the calculation of the flow boundary layer. More recently,
Wieghardt and Welz (ref. 4) have used, in addition to the
momentum equation, an integrated energy equation, and
Tetervin and Lin (ref. 5) have introduced a still more general
integral condition for the boundary layer which may be used
in such calculations. The use of these expressions gives’
better agreement with exact calculations and with measure-
ments in special cases, particularly in regions where the pres-
sure increases in flow direction. Since, in the application
considered, the regions of most concern are those where the
pressure decreases, the integrated momentum equation,
which is simplest to handle, will be used. Schlichting (ref.
6) used this equation to calculate the flow boundary layer
on a porous surface through which fluid is sucked in order
to keep the boundary layer laminar or to prevent flow sep-
aration. A paper by Dorodnitzyn (ref. 7) extended the
method to include the effect of Mach number and of variable
property values. However, this extension is developed only
for zero heat transfer. The calculation of the flow boundary
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layer in this report will essentially follow Schlichting’s
approach.

After the flow boundary layer is determined, the thermal
boundary layer can be calculated according to the method of
Kroujiline by use of an integrated heat-flow equation. Ve-
locity profiles known from the calculation of the flow bound-
ary layer and temperature profiles within the boundary layer
whose shapes are approximated by a polynomial expression
are introduced into this heat-flow equation and the equation
is solved for the thickness ratio of the thermal boundary
layer to the flow boundary layer (ref. 1). This procedure,
however, becomes quite lengthy, especially when the number
of terms in the polynomial expression for the temperature
profile is increased in order to improve the accuracy of the
approximetion. When an attempt was made at the NACA
Lewis laboratory to extend this method, which was previously
used only to determine the heat transfer on solid surfaces, to
transpiration-cooled porous walls, it was found that the
procedure for the solution of the heat-flow equation becomes
much simpler and more direct if the equation is solved for a
thermal boundary-layer thickness termed convection thick-
ness. This will be explained in detail in & later section of
this report. After the method was developed and the cal-
culations were finished, a note by Dienemann (ref. 8) was
found in which the same kind of approach is briefly described.
Dienemann applies the method to calculate heat-transfer
coefficients on solid surfaces and proposes to extend it in
such a way as to account for & temperature variation along
the solid surface and the influence of internal frictional heating
within the boundary layer. He also shows that this method
is superior to other approximations which were compared
by Goland (ref. 9) with an exact solution for a cylinder with
circular cross section. It may be of interest to mention that
Goland obtained the exact solution from the fact that the
differential equation aescribing the temperature boundary
layer around an infinite cylinder in a flow normal to its axis
and for a fluid with a Prandtl number of 1 has exactly the
same form as the differential equation describing the span-
wise flow within the boundary layer on a yawed infinite cyl-
inder. Calculations of the heat transfer on a transpiration-
cooled flat plate which included the variation of property
values with temperature were made by Yuan (ref. 10) with

* the assumption that the total-temperature profile within the
boundary layer is similar to the velocity profile. This as-
sumption is valid for & Prandtl number of 1 and forno pressure
gradient. The purpose of the present investigation is to
consider the influence of pressure gradients as well as
Prandtl numbers different from unity.

A second approach for obtaining an approximate solution
of the thermal boundary layer was described in reference 1.
It is still simpler than the approach by Kroujiline, since in
this method it is not necessary to calculate the flow boundary
layer prior to the determination of the thermal boundary
layer. This method uses exact solutions of the boundary-
layer equations which are known for a special type of pressure
variation in the flow which is encountered on wedge-shaped
bodies. These velocity profiles and the temperature profiles
are used to approximate the actual profiles for arbitrary
pressure variations. A differential equation is set up
with the condition that the growth of the boundary layer
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at any place on the cylinder with arbitrary cross section
be the same as for the wedge-type flow when the boundary-
layer thickness and the pressure gradient have the same
values in both cases. When this idea is applied to the
momentum thickness of the boundary layer, the resulting
equation is identical with Kérmdn’s integrated momentum
equation. When it is applied to the convection thickness of
the thermal boundary layer, the resulting differential
equation fulfills the requirement that the heat transferred
from the surface to the fluid must be found again within the
boundary layer (ref. 11). This method was compared with
exact solutions and experimental values in reference 1 and in
investigations performed at the University of California
(ref. 12), and the agreement obtained was quite satisfactory.
This method can easily be extended to include effects of
variations of the surface temperature and of internal heating
(ref. 11); however, the corresponding exact solutions for the
wedge-type flow must be known. Such solutions, which take
into account the effects of a surface temperature variation
and of internal heating, are presented in references 11 and 13.
The method may also be extended to the transpiration
cooling of porous surfaces as soon as the corresponding exact
solutions for this case are known. A few of these solutions
are presented in reference 14. However, too few solutions
are given for use as a basis for the approximate method.
Brown (ref. 15) has recently made an extensive calculation
to obtain exact solutions in transpiration-cooled porous
surfaces of the wedge-flow type which include the effect of
pressure gradients and of variable property values. The
results of this calculation are now being used to extend the
method mentioned in the preceding paragraph to transpira-
tion cooling.

This paper deals with the method described as the first
type of approach. The method has the advantage of being
applicable to cases for which the corresponding wedge-type
flow and heat transfer are not known.

STATEMENT OF PROBLEM AND SIMPLIFYING
ASSUMPTIONS

This report is & contribution to the problem of determining
the development of the thermal boundary layer and the
heat-transfer coefficients on a body of arbitrary cross section
with porous walls in a two-dimensional flow. Figure 1
shows the cross section of & body of this type. At Reynolds
numbers that are sufficiently high, the flow around the body
may be subdivided into the bouundary-layer region, which
surrounds ‘the body with a very small thickness, and the

* U" _ —Boundary layer
——a
»
[

- --Stagnation point

W
Fraure 1.—8ketch of turbine blade indicating notations used.
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potential flow, which determines the pressure distribution
around the body. The highest pressure on the body is found
at the stagnation point. The pressure then decreases in
flow direction along both sides of the body and usually
increases again later. The pressure variation along the
body determines the development of the flow boundary layer
and also whether the boundary layer is laminar or turbulent.
Usually, the laminar part is confined to a region near the nose
of the body. The laminar boundary-layer region is investi-
gated herein. The flow of coolant through the porous
surface may be described by the velocity v, with which the
coolant leaves the surface in a normal direction. . The ques-
tions which will be answered in this report are (1) what are
the local heat-transfer coefficient and the surface tempera-
ture on any point along the body for any prescribed dis-
tribution of the coolant velocity, and (2) what distribution
of the coolant velocity gives a desired distribution of the
heat-transfer coefficient and of the surface temperature
around the body. Usually, for example, a constant wall
temperature is most desirable and the problem is to determine
that distribution of the coolant velocity which results in a
constant wall temperature.

A number of simplifications must be introduced in order to
keep the time required for the solution of a special problem
within a tolerable amount. The following assumptions are
made: The flow is two-dimensional and in steady state,
internal frictional heating within the boundary layer can be
neglected, and property values (density, viscosity, and heat
conductivity) may be considered constant. The influence
of temperature gradients along the surface of the body is
noglected. Although this influence may be considerable
(rof. 13), there is no quantitative information available for
transpiration-cooled surfaces that would permit this effect
to be taken into account.

In applying the method to the determination of the tem-
peratures of transpiration-cooled turbine blades, neglecting
internal frictional heating should be admissible, since the
temperature differences within the boundary layer generated
by the cooling process are considerably larger than those
generated by aerodynamic heating. This will be shown in
more detail later. On the other hand, the large temperature
variation in the boundary layer is conmected with a con-
siderable variation of the property values. The influence of
this variation on the heat transfer may be approximately
corrected by use of the results in reference 15.

BOUNDARY-LAYER EQUATIONS

In a coordinate system, shown. in figure 1, where the z-axis
runs along the surface and the y-direction is normal to the
surface and under the assumptions mentioned in the previous
section, the differential equations describing the velocity and
the temperature within the boundary layer are

ou* 0 ofu*
pu*ax*'l'lm*ay az*Tﬂay*a (1)
ov*
x#+ay* (2)
" oo =k g ®
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(All symbols are defined in appendix A.) The equations.
have to fulfill the following boundary conditions: At the sur-
face (y=0), the velocity component u* parallel to the surface
is 0, the velocit;y component v* normal to the surface has a
finite value »,*, and the tempera.ture of the surface is inter-
connected with the velocity »,,* by the over-all heat-transfer
process, so that only one of the two values may be prescribed.

At the outer edge of the boundary layer (y= =), the u* com-
ponent of the velocity transforms asymptotically into the
stream volocity U* and the temperature transforms into the
stream temperature. Since only temperature differences
appear in equation (3), the temperature level does not enter

“into the problem. Therefore, all temperatures will be meas-

ured from the temperature in the stream as reference tem-~
perature, and ¢ will be interpreted as the temperature differ~
ence from this reference temperature. Consequently, outside
of the boundary layer, t=0.

In a gas stream, it is advantageous to interpret ¢ as the
total temperature difference. In this case, equation (3)
already includes the effect of the frictional heating for a gas
with a Prandtl number of 1. Since for all gases, the Prandtl
number does not deviate much from the value 1, equation
(3) also gives & good approximation to the real conditions for
gases as long as the temperature differences impressed upon
the boundary layer by a cooling process are larger than the
temperature differences created by internal friction.

In order to reduce the number of parameters, the differen-
tial equations will be made dimensionless. For this purpose,
all lengths measured parallel to = are divided by L, the dis-
tance between the stagnation point and the trailing edge of
the body measured along the surface, and all velocities in.
this direction are divided by an upstream velocity U,. All
lengths and all velocities parallel to ¥ are, in addition, multi~
plied by the square root of Reynolds numbers Re, based on.
the body length L and the upstream velocity Uy:

=
=T

The pressure gradient 0p*/dx*is impressed upon the boundary
layer by the potential flow outside the boundary layer and
can be replaced by the stream velocity gradient by use of
Bernoulli’s equation:

'u,—U =7 1/Reo =7 Reo (4>

_op* ol
ot U o ®}
In this way, equations (1) to (3) transform into
bU %
e E_H’ by b:l: +by ©)
ou , 0v__
E—*—b—i—o (7>
bt bt 1 0%
The boundary conditions for these equations become
y=0 ©=0 1=0,() t=t,(z) 9y
Y=o u—-U t—0 10}

The equations are now integrated over ¥ from y=0to y=w.
The result of this integration is Kérmén’s mtegrated momen~—
tum equation
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d (° au (= ou
Txﬁ U—w)u dy+7i;fo U—u) dy—v,,U=<a—y ., (11)

and the heat-flow equation

da (° 1 /ot
% J, wirto—p:(5),

In order to simplify these equations, the following charac-
teristic boundary-layer thicknesses are introduced:
(1) The displacement thickness of the flow boundary

layer
® U
o), (=3)

(2) The momentum or impulse thickness of the flow
boundary layer

®u u°
= =(1—=)d

(3) The convection thickness of the thermal boundary

layer
A )/
a,,c-ﬁ 05 dy

where 8 is the ratio #ff, with the limiting values =1 for
y=0 and 6=0 for y==. Introducing these boundary-
Inyer thicknesses and writing dU/dz as U’ transforms equa-
tions (11) and (12) into

(12)

(14)

(15)

4 (U’a,)+a,UU'—o,,U=(% (16)
12 T, —ter——p2 (5 )

VELOCITY AND TEMPERATURE PROFILES

In order to obtain an approximate solution of the last two
equations, approximate expressions for the velocity and
temperature profiles will be introduced. The accuracy of
the results of this calculation will depend on how well the
actual profiles are approximated by the assumed shapes.
The temperature profiles as well as the velocity profiles are
chosen as a one-parameter family. The parameter for each
family is determined in such a way that the assumed profiles
fulfill the exact boundary-layer equations (6) to (8) at the

wall surface:
W@, o

i (ay> ~Pr (bm

In addition, the following boundary conditions will be
fulfilled:

(19)

y=0 u=0 6=1 (20)

u—U 6—0 (21)

'y—)r.o

Originally, polynomial expressions were used to approximate
both the velocity and the temperature profiles. Schlichting,
however, pointed out that better approximations may be
obtained by expressions composed of trigonometrie functions
(ref. 6). The following profiles are used in this report:

(13).
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Veloclty profile,—For A>0, 0 %
L—sinZ¥ A <l—e : ,-—sm 7))
U "2 26
and for%’z 1, . (22)
cu _ _ _3%
U—l Ae J

By use of this profile, the following expression is found from
equation (18) for the shape parameter A:

U’a’—-’% Db
A (23)
9+(3——

The velocity profile equation (22) has already been used by
Schlichting (ref. 6). Forasolid flat plate (U’=0 and 9,=0),
it approximates the Blasius velocity profils very well, and for
U'=0 and 9,=—3/8, transforms into the exact asymp-
totic suction profile as calculated by Schlichting (ref. 6).

For A<0, 05%51,

%—sm —I-Asm = (1—sm oy

and for%Zl, - (24)

—=1
o
The shape parameter in this case, as obtained from equation
(18), is
U’a’-—% 0,5
F i E— (25)
™
gy v

For the solid flat plate, this profile gives the same expression
as equation (22). It will be shown later that the profile
approximates the separation profile as calculated by Hartree
(cef. 16) better than the usual polynomial expression.
Separation. occurs at A=—1 and the corresponding profile

has the shape .
Y i TY
osin's 3 (26)
Temperature profile.—For 0 < -;i <1,
L—B 1—sinZ LA, sinT (1— ¥y
fo 3 5 Ausing (1 —sing §
2
and for L >1, @)
54
=0

The shape factor for this profile is obtained from equation
(19) as follows:



LAMINAR HEAT TRANSFER AROUND POROUS CYLINDERS OF ARBITRARY CROSS SECTION

__ —Prov.$,

A‘_w-{-Pr 0,5,

(28)
In this case, & negative shape factor A, is always connected
with a positive value of v,, whereas for the velocity profile,
the sign of the shape factor depends, in addition, on the
pressure gradient dU/dz.

'With these profiles, the different boundary-layer thick-
nesses and the velocity gradient at the wall may be calculated.

8a_(1_2\_(2_2

—5-—<1 T (3 T A W 29)
%5=0.1366+0.03791A—‘0.00786A’ LAS0  (30)

du\ _Ulr L3

(&)=515+(-5)2] ) D
5 N /2 1 3
3=0—;";~9A 2)
%3=O.1366—0.01456A—0.02618A’ LA<O  (33)

du U

(). ~5 50+ (34

o

The nondimensional temperature gradient at the wall is
AN
(Z). =550+ (35)

The corresponding expressions for the convection thickness
of the thermal boundary layer are presented in appendix B.
A9 . . = -

3
3
b4
A5l
RLIS
434
il o
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TRANSFORMATION OF BOUNDARY-LAYER EQUATIONS
FLOW BOUNDARY LAYER
Multiplication of equation (16) by &/U and a partial differ-
entiation of the first term give

U Bt (242) 50 —0ur= (5 (36)
The expression in the parentheses of the second term on the
left-hand side and the term on the right-hand side are func-
tions of the shape parameter A. Therefore, the momentum

equation for the boundary layer may be written in its final
form.

) )~ 500ty @) -

with the following expressions for the two functions f; and
s, which are obtained from equations (29) to (34):

0.3634—0.03005A

(A)=2]
F =24 556 70.03701 A—0.007864° (38)
A>0
) _r _ 3
fg(A)—[Q-—l-(3 ;)A](0.1366+0.03791A- 0.00786A (39)
0.3634—0.1366A
p— [}
F =245 7366—0.01456A—0.09618 4% (40)
A<0
fa(A)=% (144) (0.1366—0.01456 A—0.02618 A2 41)

These functions are presented in figure 2. All curves have
8 break at A=0 because different expressions approximate
the velocity profiles for positive and negative A values.
Equation (37) is a linear first-order differential equation
from which the momentum thickness of the boundary layer

81,

A

Fraurm 2.—Chart for determination of f;, f3, and 848 used in flow boundary-layer differential equation. (An 18- by 10%-in. working chart of this
figure may be obtained upon request from NACA Headquarters.)
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Firaure 3.—Chart for determination of shape parameter A for flow boundary-layer calculations.

(A 22- by 15¥%-in. working chart of this figure

may be obtained upon request from NACA Headquarters.)

can be obtained by integration, as soon as the gradient U’
of the stream velocity U and the porous flow characterized
by v, are known as functions of z. In order to make the
calculations more convenient, the shape parameter A can be
expressed as & function of the two quantities U’8# and
Yuby :

)
U’a,’—g P f
A20,A=—rss ~ 5 42)
ORI
U'ﬁfz—% Dby %
43)

A<0,A ”2§>2+3w8§
o\3/) T %%

The ratio §,/8 occurring in these equations is a function of A
(8ee egs. (30) and (33) and fig. 2). The functional relation
for A is plotted in figure 3. By use of figures 2 and 3, the
integration procedure for the differential equation (37) be-
comes very simple. The step-by-step procedure for such a
calculation is presented in appendix C.

In order to start the calculation at the stagnation point,
the boundary-layer thickness &, at this location must be
known. At the stagnation point, the stream velocity U is
zero. Since, on & blunt nose, the increase of the boundary-

layer thickness is never infinite, the term on the right-hand
side of equation (37) has to be zero. This gives the equation

f 2(4) “f 1AVT82v,6,=0 (44)

However, figure 3 also applies to the conditions at the stag-
nation point. From both relations, U’s3, A, fi, and f; were

60 .
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Figure 4.—Chart for determination of U’38 at stagnation point for

flow boundary-layer calculations.
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cach obtained as a function of v,5, by & trial-and-error
process. These values are presented in table I. The con-
nection between U’sf, A, and 9,8, is also shown in figure 3
as the stagnation line. Table I cannot be used immediately
to start the calculation because the value 1,5, is not known.

2 3
However, the value %“}?, =%; which contains only known
1

values, is also & function of U’é2 and is plotted in figure 4.
From this figure, U’5? can be determined for & given v,3/U"
and &, can then be obtained from this value.

THERMAL BOUNDARY LAYER

With the help of equations (28) and (35), the heat-flow
equation (17) is transformed into

1d

L a PTK‘Dws \ Ub‘;,ccﬂ,
v, dx

7 +PrRvb) vt dx

where K denotes the ratio 6,/6. The last term on the right-
hand side accounts for a variation of the temperature along
the surface. A difficulty arises in connection with this term.
It is known from the results of references 11 and 13 that a
temperature gradient df,/dz also has a pronounced effect on
the shape of the temperature profile. Since no such effect
was included in the assumed profile (eq. (27)), the signifi-
cance of the last term is doubtful. It was therefore neg-
lected herein, restricting this report to cases where the
variation of the surface temperature is kept small either by
internal conduction within the wall or by proper choice of
vy 'The investigation of the influence of large surface tem-
perature gradients will be left to future work. With this
simplification, equation (45) can be written in its final form

U8,,9=1 —l_; PrIl{vsz (1 45)

Zi% Uss, d=0.,12(PrKv,?) 46)

where f; is 2 function of the product Pr Kv,$, as presented in
figure 5. TFor a solid wall (v,=0), the equation simplifies to

d r 1
&z V=5 P @n
The shape parameter A, may be written in the form
_ —Pr Ky
A;—m’;‘a (48) .

This equation, together with the expressions for &, /s
(appendix B), determines & functional relation between
K, 5,./s, A, and Pr 9,8, which is presented in figure 6. The
figure presents the ratios &, ./s for each of three values of the
shape parameter A (—1, 0, and +1). For intermediate
values of A, linear interpolation in the range A=—1 to
A=0, or A=0 to A=1, at a constant value of K may be
used with good accuracy. The heat-flow equation (46)
is again a linear first-order differential equation from which
the thermal convection thickness is obtained by integration
when the stream velocity U, the flow through the porous
surface vy, and the Prandtl number Pr are prescribed, and
the boundary layer thickness & and the shape factor of the
flow boundary layer A are known from & preceding solution

345

of equation (37). The step-by-step procedure for such a
calculation is explained in appendix C.

In order to start the calculation, the convection thickness
8,. must be known at the stagnation point. A partial
differentiation of the left-hand side of equation (46) gives

U %'FU'&. =0ufs
At the stagnation point, U is zero, and the boundary-layer

increase dd,,./dz is not infinite on a blunt-nosed body. This
results in the equation

UI
— 81, 0=13 (Pr Kv,0)
vw
or
U's® 6, , K
v 5 o (PrEed) (#9)
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F16URE 5.—Chart for determination of fy used in thermal boundary-
layer differential equation.
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This is a relation between the two unknown ratios é,./5 and
K. A second relation is given by figure 6. From both, the
values &, /6 and K can be determined by & trial-and-error
procedure. The values are presented in table IT and
figure 7.

When the thermal convection boundary-layer thickness
is known, the local heat-transfer coefficient follows by a
simple calculation. The equation which defines the local
heat-transfer coefficient h is

ot
jT— (—
oY*/

This equation gives, for the local Nusselt number based on
the length L,

_AL__Lr/ot\ o
Nu=T=-1. (W)f Ve <ay>.,,
The introduction of equation (17) for the temperature

gradient leads to the expression
Nu 1 d

(50)

(51)

-‘/?'e;=PT EJ —d—:c (t,,Ua,,c)—vw =V PT (fs—l) (52)
Without porous cooling, equation (52) simplifies to
Nu =1
VRe, 2K 2

In many cases, all the heat transferred from the outside
flow to the wall surface is picked up by the cooling fluid on
its flow through the porous wall. In this case, the wall
surface temperature may be calculated by the equation
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where ¢, is the temperature with which the coolant enters
the porous wall. The ratio of the difference in gas temper-
ature minus wall surface temperature to the difference in
gas temperature minus coolant temperature is given by the
expression

2 1 1

@ =-—to == —_—

1, h s
14—
+Pcp”w*

(55)

COMPARISON OF ASSUMED VELOCITY AND TEMPERATURE
PROFILES WITH EXACT SOLUTIONS

The accuracy of the method depends on how well the
assumed profiles approximate the actual ones. It is there-
fore necessary to check the accuracy of this approximation
with the results of exact calculations to the extent that these
are available. Such a comparison will be made in this section.

VELOCITY PROFILES

For the solid surface (»,=0), the comparison can be made
with exact solutions, which were obtained by Hartree (ref.
16), for wedge-type flow for which the stream velocity is a
power function of the distance from the stagnation point
(U=Ux™). A set of velocity profiles taken from reference
16 is presented as a family of dashed lines in figure 8, where
the ratio of the velocity « in the boundary layer to the stream
velocity U outside of the boundary layer is plotted over the
dimensionless distance

=Y Uy U
ht=po0,.* (t;—1ts) (54) J2—gVvz* o—gV =z
3
3 5 6 7
R
e .
17 ! r
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Fraurs 7.—Chart for determination of 3../6 and f; at stagnation point for thermal boundary-layer caloulations. (A 17- by 9-in. working ohart
of this figure may be obtained upon request from NACA Headquarters.)
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and the shape parameter g is defined by the equation

ﬂ=ml$—l- The expression for the dimensionless displace-
i . s [T
ment thickness is z{—_\ ,__2_5‘/: Therefore,
Cane_ B .U
A differentiation of U=U,z" gives U’'=m g=_§_ %
Therefore,
Bz =U"s (56)

The value z; as a function of 8 is presented in reference 1.
Since U’s# is a function of A, according to equations (42)
and (43), equation (56) presents a relation between g and A
from which A may be calculated for any value of 8. The
shape of the approximate velocity profile is determined by
A (eqs. (22) and (24)). In this way, the solid profiles of
ficure 8 were determined. They are superimposed on the
exact profiles in such a way that the displacement thickness
is the same in both cases. Figure 8 shows that generally
the agreement between the exact profiles and the approxi-
mation used in this report is satisfactory. Only for the
separation profile (8=—0.1988) are the deviations larger,
but even for this separation profile the approximation by
equation (24) is better than the usual four-term polynomial
approximation, which is shown as a dash-dot line.

For a porous wall, some exact solutions are contained in
reference 14. The notations in this reference are the same
as the ones mentioned in the previous paragraph in connec-
tion with the Hartree solutions. In that report the porous
flow velocity v, is characterized by

Tz
N A

From this and the previous expression for z;

V2—B N z;=0,0;

The value of 2, is presented in reference 14 as a function of
A for two values of g8 (0 and 1). Therefore, equation (57)
presents & relation between X and A for & certain value of 8.
Equation (57) therefore connects the parameter A, which
determines the shape of the exact velocity profile, with the

(67)
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Freure 10.—Comparison of approximate velocity profiles for flat
plate with Schlichting solutions (ref. 14). 8, 0.

form parameter A determining the shape of the approxima-
tion. Figures 9 and 10 show a comparison between the
exact profiles and the approximations for the neighborhood
of the stagnation point (8=1) and for a flat plate (8=0).
It may be seen that again this agreement is quite satisfactory
for f=1. For =0 the approximation is not as good for
profiles with a distinct S shape. For the largest coolant
flow (characterized by the highest value of A or the smallest
value of A) the deviation is considerable, although the agroe-
ment is somewhat better than that with the four-term poly-
nomial approximation indicated by a dash-dot line. Thare-
fore, the method presented in this report should not be used
for excessive coolant-flow rates.

TEMPERATURE PROFILE

For a solid wall (v,=0), the approximate expression
(eq. (27)) for the temperature profile has a unique form,
independent of the pressure gradient along the surface.
For a gas with a Prandtl number of 1 and constant pressure
along the surface, it is known that the temperature profile
is similar to the Blasius velocity profile. This similarity
also holds for the approximation in this report. In addi-
tion, it is shown in reference 1 that the shape of the actual
temperature profile is influenced only to & minor degree by
a pressure gradient in the flow. Therefore, these approxi-
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Figure 11.—Comparison of approximate temperature profiles for
flow at stagnation point with exact solutions (ref. 14).
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(2) Blade I. Ratio of chord length to distance between consecutive
blades c/s, 1.408.

Ratio of chord length to distance between consecutive
blades cfs, 1.138.

Fiaurn 12,—Turbine-blade profiles used for caloulated examples.

(b) Blade II.

mations should be quite good for & solid surface. For a
porous wall, with a constant pressure along its surface,
and for & fluid with a Prandtl number of 1, the velocity and
temperature profiles are again similar. Therefore, figure 10
also shows the degree of approximation for the temperature
profile.

For the flow in the meighborhood of a stagnation point
and & fluid with & Prandtl number of 1, some temperature
profiles were calculated in reference 14. Figure 11 presents
the exact temperature profiles and the approximations in a
way that shows the thickness of the temperature boundary
layer, which is defined in the same way as the displacement
thickness, to be the same for the accurate solution and the
corresponding approximation. Figure 11 shows that the
agreement is satisfactory as long as the coolant flow char-
acterized by the value A or A, is not too large. The approxi-
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Figure 13.—Velocity distribution around surface of blade.

mation for the highest coolant flow rate (A=3.191) is not
shown since it is obvious that the exact curve cannot be
approximated by the trigonomefric functions from which
the approximation is composed. Large coolant flows in
the ranges where the agreement ceases to exist will probably
not be used because the gain in cooling effect for a given
increase in coolant flow is too small in this range.

NUMERICAL CALCULATIONS FOR TURBINE BLADES

The method developed in the previous sections was used
to celculate the local distributions of the heat-transfer
coefficients for two turbine blade shapes for which the velocity
distributions were known. The two blades are shown in
figure 12. The line at the nose of the blade indicates the
circumferential direction and the arrow, the direction of the
upstream velocity. Figure 13 shows the velocity distri-
butions around the blade circumferences. The velocity
distributions around the blades were calculated using the
method described in reference 17.

The method outlined in this report can be used to calcu-
late the development of the laminar-flow boundary layer
in the downstream direction up to the point of separation.
In reality, at the Reynolds numbers encountered in gas-
turbine engines, the boundary layer usually becomes turbu-
lent before it reaches this point. The transition point to
turbulence is determined by the pressure gradients along
the blade surface, by the boundary-layer thickness, by the
temperature distribution. within the boundary layer, and, in
addition, by the curvature of the blade surface and by the
stream turbulence (ref. 18). Little quantitative knowledge
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Fiaure 14.—Growth of flow impulse and thermal convection boundary-
layer thicknesses for blade. Pr, 0.7.

exists on the influence of all these parameters. However,
there are indications that on turbine blades the point of trans-
ition is near the point at which the maximum value of the
velocity is reached. A calculation which deals with laminar
boundary layers is therefore useful for the region near the
nose of & turbine blade. The points of maximum velocity
are indicated in figures 14 to 16 by small dots.

The first part of the calculation deals with the problem
in which & uniform coolant flow rate v, is prescribed along
the blade periphery. The development of the flow and of
the thermal boundary layers was celculated in the way
described in appendix C. The results are presented in
figure 14. Apparently both boundary layers start out with
a finite value at the stagnation point and increase in thick-
ness in. the downstream direction on both the suction and the
pressure surfaces. The boundary-layer thicknesses at any
place along the blade increase with increasing coolant flow
rate.

In figure 15 the local heat-transfer coefficients along the
blade surfaces that are obtained from the thermsal boundary-
layer thickness are shown. The figures show that very
high local values are encountered at the stagnation point
and that the values decrease considerably with increasing
distance from this point. The application of transpiration
cooling decreases the heat-transfer coefficients effectively
from the values obtained on a solid blade surface (p,=0).
The decrease is not as pronounced at the stagnation point
itself as on the sides of the blade. The value of the velocity
ratio v,*/U,* may be obtained from the parameter v,
presented in the diagrams by dividing it by the square root
of the upstream Reynolds number. For turbine blades
this Reynolds number is near the value 105 so that a velocity

*
ratio %=0.00316 corresponds to a value of v,=1. Values
0
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for this velocity ratio which are considered in practical
applications are in the neighborhood of 0.01. A comparison
of figures 15 (a) and (b) shows that generally the values of

Nu/+/Re, at the stagnation point decrease considerably
with an increasing ratio of the radius of curvature at the

blade nose to the blade chord. The values of Nu//Re, are
determined by the velocity gradient dU/dz, which also
depends mainly on the dimensionless radius of curvature.
Increasing the radius of curvature at the blade nose is
therefore an effective means of decreasing the heat-transfor
coefficient in this region. Downstream of the point of
boundary-layer transition to turbulence, the heat-transfor
coefficients will increase. To give some indication of the
magnitude of the values that may be expected in the turbu-
lent region, heat-transfer coefficients were calculated at the
location £=0.5 under the assumption that these values are
the same as on a flat plate at the same distance z from the
leading edge, with a stream velocity equal to the local value
found at the blade at x=0.5, and with an upstream Re,
equal to 10°. Formulas derived by Rannie and Friedman
(ref. 18) were used for these calculations. The short horizon-
tal lines in figure 15 indicate these values; the dashed part
of the curve v,=0 in figure 15 (a) shows the probable heat~
transfer values in the transition and turbulent regions.
The surface temperature of the blade is determined by
the heat-transfer coefficients. Equation (55) gives the
relation between both values when heat conduction in
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F1aure 16.—Variation of local heat-transfer coefficient near stagnation
point for blade. Pr. 0.7.
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Fraure 16.—S8urface temperature distribution for blade. Pr, 0.7.

the blade wall and heat radiation can be neglected. Figure 16
shows the values 1—%® determined from equation (55).
The quantity 1—® is the ratio of the difference in blade
surface temperature minus coolant temperature to the
difference in effective gas temperature minus coolant tem-
perature. The higher heat-transfer coefficients near the
leading edge create high blade temperatures at that location.
Heat conduction within the blade wall tends to reduce
these high local temperatures. This reduction is assisted by
the fact that the blade temperatures are especially low
in the laminar region on both sides of the leading edge.
Therefore, it may be that the blade-nose temperature is
reduced to a value not higher than the blade-wall temperature
in the turbulent part, especially for blades with a blunt nose.
On the other hand, it has to be kept in mind that the heat-
conductivity values for porous materials are lower than for
solid walls (ref. 18). It has already been mentioned that
temperature gradients along the blade surface influence the
local heat-transfer coefficients somewhat; however, not
enough information is available to account for this effect.
413072—57——24
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A surface temperature that decreases in flow direction
tends to increase the heat-transfer coefficients so that the
decrease in surface temperature on both sides of the stagna-
tion point may be slightly less than those shown in figure 16
where heat conduction within the blade walls is excluded.
A second set of calculations was made for blade I to deter-
mine that distribution of the local coolant flow rate v, along
the blade surface which results in a constant blade tempera-
ture. The procedure for such a calculation is also described
in appendix C. The local coolant flow rates », which are
necessary in order to keep the temperature ratio @ (eq. (55))
at the value 0.7 are shown in figure 17. The flow boundary
layer and the thermsal boundary layer determined in this
way are presented in figure 18. A comparison of this figure
with figure 14(a) indicates that the development of the
boundary layers is considerably different for both cases.
The boundary-layer growth is smaller for the case of con-
stant wall temperature. Figure 17 shows that the highest
local flow rates are necessary near the stagnation point in
order to keep the wall temperature down at that place. The

8
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Fraume 17.—Variation of coolant flow required to maintain constant
blade temperature for blade I. &, 0.7; Pr, 0.7.
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magnitude of the coolant flow rate at the stagnation point
is proportional to the square root of the velocity gradient
dU/dz, which is itself determined mainly by the value of the
radius of curvature at the blade nose. The smaller this
radius, the larger the velocity gradient and the local coolant-
flow rate. The flow rates decrease on both the pressure and
the suction surfaces in the downstream direction. Down-
stream of the transition point the boundary layer will be
turbulent. It is known that the cooling effectiveness of a
turbulent boundary layer is less than that of a laminar
boundary layer. Correspondingly higher values of the cool-
ant flow rate are necessary in the turbulent region in order
to keep the blade temperature constant. In order to give
some indication of the magnitude of the coolant flow rate
necessary for the turbulent region, the values 9,, which result
in the same value (=0.7) as in the laminar region were
calculated at the location z=0.5. For this calculation the
formulas presented in reference 18 were used and it was again
assumed that the local ® value on the blade surface is the
same as on a flat plate at the same distance from the leading
edge and with a velocity equal to the local stream velocity
U and an upstream Reynolds number Re, equal to 10°. The
flow rates v, obtained in this way are indicated by short
horizontal lines in figure 17. The values in the turbulent
region along the blade can be expected not to deviate much
from these values. Apparently a considerably higher coolant
flow rate is necessary in the turbulent portion of the blade
surface than 'in most of the laminar portion. In order to
simplify manufacturing problems, turbine blades may be
produced in such a way that the required coolant flow rate
has a constant value along the pressure surface and & differ-
ent constant value along the suction surface. This then re-
sults in lower local blade temperatures in the region of laminar
boundary layers; the heat conduction into this cooler part
of the blade may reduce the local temperatures at the stag-
nation point to values equal to or lower than the tempera-
tures in the turbulent region, especially when the radius of
curvature at the blade nose is not very small. For blades
with a very pointed nose it may be necessary to have s
coolant flow rate at the stagnation point approximately
twice as large as along the sides in order to reduce the tem-
perature at that point.
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CONCLUSIONS

A method which permits the approximate calculation of
local heat-transfer coefficients and surface temperatures in
the laminar flow region around cylinders of arbitrary cross
section with transpiration-cooled walls was developed. Veloc-
ity and temperature profiles in the boundary layer were
approximated by trigonometric expressions. The method
was applied to determine local heat-transfer coefficients and
surface temperatures in the laminar region of two transpi-
ration-cooled turbine blades for a given coolant flow rate.
Coolant-flow distributions necessary for maintaining uni-
form blade temperatures were also determined. The follow-
ing conclusions are made:

1. For small coolant flow rates, the assumed trigonometric
approximations for the velocity and temperature profiles
within the boundary layer agree well with exact solutions.
For high coolant flow rates (which are outside the range of
practical interest), the agreement becomes poor. It is, how-
ever, better than the four-term polynomisl approximation
formerly used.

2. Transpiration cooling results in a considerable reduction
in heat-transfer coefficients for turbine blades in the laminar
region.

3. The surface temperatures of a blade with negligible
heat conduction are highest at the leading edge, lowest in
the rest of the laminar region, and have intermediate values
in the turbulent region.

4. The following variation of the coolant flow rate along
the blade surface is necessary to keep the blade temperature
constant. Highest local coolant flow rates are required at
the stagnation point in order to keep the blade surface tem-
perature down at that point. The coolant flow rates de-
crease very markedly in the downstream direction on both
the suction and pressure surfaces in the laminar region.
However, they increase again when the turbulent region is
reached.

5. In order to maintain the same surface temperature on
both sides of the blade, different coolant flow rates should be
used for the suction and pressure surfaces.

Lewis Fricar ProruLsioN LABORATORY
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICB
CreveLaNp, O=Io, June 22, 1951



APPENDIX A

SYMBOLS
The following symbols are used in this report: z nondimensional distance used in wedge-type flow,
¢ chord length of turbine blade, ft Y U
Cp specific heat at constant pressure, Btu/{b) (°F) Vv2—8\Vz
T fm(l?‘f;i)on ?if (Z%‘;?e factor of velocity profile (see egs. | , nondimensional displacement thickness used in
an 8
S function of shape factor of velocity profile (see eqs. wedge-type flow, JZ__i—E\/?:E
(39) and (41))
fa function of Pr, K, v, and & (see eq. (46)) B shape parameter for Wedgt_a-type flow, 2m/(m-1)
A heat-transfer coefficient, Btu/(sec) (sq £t) (°F) A shape parameter of velocity profiles (see egs. (23)
K ratio of thermal to flow boundary-layer thickness, and (25))
5,5 A, shape parameter of temperature profile (see eq. (28)
k thermal conductivity, Btu/(sec) (ft) (°F) or (48)) ,
L length of either side of surface of profile measured | ° flow boundary-layer thickness .
from stagnation point, £t 8z flow boundary-layer displacement thickness,
m exponent (termed Euler number) in U= U™ f ® <l—qi>dy
Nu  Nusselt number, ALk 0 U
Pr Prandtl number, cufk 8 flow boundary-layer momentum or impulse thick-
p* pressure along body, Ib/sq ft ® o "
Re;,  Reynolds number, U,L/» hess, J; ﬁ(l'—ﬁ) dy
8 distance between blades, ft 5 th 1 boundarv-l :
> ) . ermal boundary-layer thickness
t t(.:,mé)lerta,t;ui'l?1 difference between local and free-stream Sio thermal boundary-layer convection thickness,
yvaiues, ® .
U nondimensional stream velocity, U*/U, j; 07 dy
. .
go ig:;?ag?:fg{éf/ ;z/csec 6 nondimensional temperature m?io, it
U, constant in wedgeflow velocity, U= U™ A shape parameter for exact solutions for porous walls,
u nondimensional velocity component along surfacs, e ‘/_‘95
w*[U, U
u* component of velocity along surface, ft/sec B viscosity, Ib/({t) (sec)
v nondimensional velocity component normal to sur- | » kinematic viscosity, u/p, sq ft/sec
¥ = p density, Ib/cu ft
faces U, Req i) nondimensional temperature ratio, f,/%,
* velocity component normal to surface, {t/sec Subscripts:
:v nondimensional distance along surface, z*/L ¢ coolant (at blade surface)
x* distance from stagnation point along surface of | W wall
profile, ft 0 upstream condition
. . . y* - | Superscripts:
Y nondimensional distance normal to surface, T vRey | dimensional
y* distance normal to surface, ft ’ differentiated with respect to z
APPENDIX B

DETERMINATION OF THERMAL BOUNDARY-LAYER CONVECTION THICKNESS

® U
) ag'a—ﬁ aﬁdy

when the assumed temperature and velocity profiles are inserted in the integrand. A single temperature profile was assumed;

it is given by equation (27) and is for 0< BE <1

4

el T Y A g
=1 smza‘ A, B1n
andforQZI
8¢
=0

Ty

26,

The determination of the thermal boundary-layer convection thickness 8, ., which is similar to the impulse thickness of
the flow boundary layer, results from the evaluation of equation (15)

(15)

@n
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Distinct velocity profiles were assumed, depending on the sign of the shape parameter A. Moreover, these profiles were fur-
ther subdivided into different expressions depending on% <lor %2 1. These assumed velocity profiles are given by equations

(22) and (24) ; they are for A>0, 0 5%51.
_3p 3
x_ - TY eyt —an EY
T sng—l-A<1 e sm26>

and for%Zl -

_3

—_—T i
UlAe )

for A<0, os%’g
Y_nTY TY(1—_qin*¥
g SmgyrAsm a(l SIS
andfor%Zl L

u_.
T ! J

It is at once obvious that, for the evaluation of §, ., four distinct cases must be considered.

(22)

e

The upper limit of the integral in the evaluation of 3, , may be restricted to the value 8, by virtue of the assumed tempera-~
ture profile. If 3,<3, the value of 5, . can be determined from & single integral with 0 and §, as limits, because the integrand
vanishes for ¥>5,. On the other hand, if §< 3,, two integrals are required for the evaluation of &, . because of the assumed

velocity profiles. These integrals have limits 0 and 8, and 5 and §,.
Results of the evaluation of §, . for the four cases follow:

Case I—A<0 and §,<é:

S o Tl eI )
Sz,c—fo I:l Bm25’ A,smzat 1—sin sin —I-Asm 1—sin dy

Integration and simplification lead to the following result:

B (1+A)(1—cos K> (K—%sinTK>+(1+A+A,+AA,)[ﬁﬁsmg(K—l—l)——ﬂ—KK_—l)sin%(K—l)]+

s gyt reEen " (K0 oo () J+

(A +AA) l: o #(2_1|_ yzo) 3_ cos TZK 7(21— y79) cosw (1 —%)——Rf_lrz) cos T (1 +£2{->:|+

1. - -
AA, [4? sin 7~z sin (K +1)— gz —sin r(K—l)—%]

Case II—A <0 and 5, >6:

—f |:1 sm2 6_,—A' sm2 5 (1—5111 ):I |:sm7r y+A sm (l—sm ) dy+
f [1 smﬁ E—At sm (1—-—5111— ):I ) dy

Integration and simplification in this case lead to
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Po (1-42) 2B E—1 25(1—!—[\,) cos -+ sz ;.Léisin%>+
= (K+1) K (K—l)
(1+A+A,+AA,){ ED" [ —gysin ]}

b’ K @K—1)] K T2K+1)] 2K«
(A+AA‘){‘5‘(2K+1)'W(T—1) f(zK—n [ e 2r ] - Sﬁ}Jf

(A‘+AA‘){1(2-1{—K)‘T74(21—K) w-(ZiK) cos "'(2—K):| w—(z—I—K) cos ["%—EK)]} +

sy sing— sre=n " s )

Case IIT —A >0 and 6§, <8§:

38y
—f I:l—smab—‘—A; sm26‘ (1—sm— >:|[sm—y—|—A (1—6 3 —gin = ) dy

Integration and simplification for this case lead to

1=t 20 —0) 2 cos TRAARHG e H(—1ka—ackan) | i TN K in T ey |+
oK 12K* 1,1 1
20 st @t e rermrreemreem o (1)

- B e, 3K
(2+K) 00”(1+K>— 608 K]“LAA‘ 2 T S@E T R o ¢

Case IV —A>0 and 5, >5:
3
= — — _ — — - 6._. —
fl:l smzs‘ A,sm281<1 sm26‘>:||:sm ——l—A(l e sin ) dy+

J— —_— —_— 6
fl:l 1541n2‘S Atsmzat sm >:|< Ae

Integration and simplification for this case result in

FK—1— (l—I—A,) cogzK_l__e—ax_l_A‘ § ;‘I"K . K)'I’

b

8o 2(1—4) , 2A
T l

<_1+A"A‘+M‘){ﬂ_fk_—1)sm E (KE”]-T(E‘JFD o[ 55

2K = 2K ZK T -
(a+44,) [(3&K2+ﬂ1) o T S op— (3&K2+f2) m:|+

1, 1 1 7(2—K) 1 w(2 +K)
(A—A4) [«(2+K> "r@—K) 70—-K) 28  x@+EK) :|+

1 K . = 2 L 3K? _ 3 _
5 o LR TR TR ¢ Te@ +72)"”:|

APPENDIX C

PROCEDURE FOR CALCULATION OF FLOW AND THERMAL BOUNDARY LAYERS

In this appendix the procedure will be explained by which the flow and thermal boundary layers, the heat-transfer
cocfficients, and the temperature distribution around a body of given shape may be obtained. As outlined previously, the
boundary conditions on the surface of the body may be prescribed in two different ways, either by prescribing the coolant
velocity v,* or by prescribing the temperature around the surface. The calculation procedure becomes simpler in the
first cage and this will be considered first. In addition to the value v,*, the distribution of the stream velocity U* just outside
the boundary layer around the body must be known. This velocity distribution may be obtained by any of the known calcula-

AA,
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tion procedures for frictionless flow on bodies without flow separation or it has to be determined experimentally when flow
separation occurs. From the velocity U*(z) the gradient U* (z) can befound.

The values mentioned have to be transformed into the dimensionless quantities U(z), U’ (), and v, by use of equations (4).

FLOW BOUNDARY LAYER

The aim of this calculation is to determine the momentum thickness 8; as a function of the distance = from the stagnation
point as measured along the surface of the body.

As a first step, the value §; has to be found at the stagnation point. For this purpose, determine v,2/U’, and read the
value U’82 from figure 4, thereby determining the momentum thickness §;. The intersection of U/’52 with the stagnation line
in figure 3 determines A, the shape parameter for the velocity profile. The velocity profile itself may be determined from
equation (22) or equation (24) if it is desired. The required parameters may also be taken from table I.

The momentum thickness along the profile surface is found from equation (37). This first-order linear differential
equation may be solved by any of the known procedures. The method of isoclines was used for the solution of the numerical
examples described previously, and its use will be outlined here. Equation (37) determines the direction of the tangents to
the different &2 curves which satisfy this equation. The task is to find the one curve which contains the &; value calculated
previously for the stagnation point. Figure 19 shows the §2 values as ordinate and the distance z from the stagnation point
as abscissa. The directions of the tangents may be obtained from equation (37) for any point in this figure characterized by
o pair of values z and 32 and may be inserted on the ordinates through & chosen sequence of distances z;, 73, %3 . . . along
the abscissa for several 57 values. The calculation proceeds for x and a chosen 8, in the following way: determine U’s? and
Y9 and read from figure 3 the value A and from figure 2, f; and ;. Calculate from equation. (37), d(8)/dz. Now the direc-
tion of the tangent may be inserted in figure 19. The same calculation is repeated for other 8 values and the corresponding
directions of the tangents are inserted in figure 19. The same calculation. is repeated for the distances z, 23 . . . If the
distance between these values is chosen small enough, & curve that starts out with the predetermined value 572 at the stagna-
tion point and is tangent to the straight lines inserted in figure 19 can be drawn in the figure with good accuracy. The calcu-
lation may be shortened considerably when the curve is inserted step by step after the tangents have been calculated for any
value 2. Then the correct value 52 for the following distance  may be guessed from the shape of the curve up to that point
and the tangents need to be calculated only in the neighborhood of this value.

The values which will be needed for the calculation may be arranged in a table such as the following:

z U U’ Dy 5, A §

0
Z
T3

The momentum thickness §; in this table results from the preceding calculation. The shape parameter A was found in the
course of this calculation and the value 6 may be determined from figure 2.

THERMAL BOUNDARY LAYER

The calculation now has to be restricted to a fluid with & certain Prandtl number. The value which characterizes the
thermal boundary layer and will be determined in this section is the convection boundary-layer thickness 8;,. To find this

/

A

P
1
8,-2 //
P
1 /
d /
- L
— =1 %
—
_— 1
A
X, X2 X3 Xq X5 Xg

Ficres 19.—Isocline solution of flow boundary-layer equation.
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value at the stagnation. point, determine v,4; from the preceding table, read from figure 7 or table IT 8,./6 and f;. This deter-
mines 5,.. Equation (52) determines the local Nusselt number Nu, and for the case in which the heat-balance equation (54)
is satisfied, equation (55) determines also the temperature ratio ®. The shape factor A, determining the shape of the tempera-
ture profile according to equation (27) may be determined from figure 5 and equation (48).

The convection boundary-layer thickness along the surface of the profile is determined by equation (46). This equation
may be solved in the same way as the corresponding flow equation. Figure 20 indicates the procedure. The product Us,,,
is plotted over the distance z from the stagnation point. The short straight lines in the figure again indicate the direction
of the tangents. It is known from exact solutions that the gradient of any boundary-layer thickness at the stagnation point
is zero and that the boundary-layer thickness itself has a finite value. Thus, the curve Us,, in figure 20 starts out with the
value zero and with the inclination U’s, . for z=0. In order to find the direction of the tangents for any valuez, for example
2y, assume a, value Us,,, calculate 8, and ,,/5, read the value K from figure 6, determine the product Pr v,8K, read f; from

figure 5, and calculate from the heat-flow equation (46) the gradient di:c (Usy,0). Imsert the corresponding tangent into figure 20

and repeat the calculation for other values Us,,. Now the curve Us,,, which begins with the value zero for =0 and with
the corresponding inclination, may be extended to z;. The calculation is now repeated for the next distance ,, the curve is
oxtended, and this procedure is repeated until the curve is known for the whole length z. The result of this calculation gives
5.0 ond f;. These values may be inserted in a table such as the following:

T Ot.c fa m i)

1
T3
Z3

The ratio Nu/+/Rey, which characterizes the local heat-transfer coeﬂi_cient, is found from equation (52). For the special case
that the heat-balance equation (54) is fulfilled, equation (55) determines the temperature ratio @.

yd
7
2
L~
/////

Ny

yd
Uy &
1,
4
1
X| Xz X3 X4 X5 Xs

Fraurs 20.—Isocline solution of thermal boundary-layer equation.
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The calculation is more tedious when the surface temperature instead of the flow velocity v, is prescribed along the blade.
When the heat-balance equation (54) is satisfied, the temperature ratio & may be determined as a function of 2. Now the
momentum equation (37) and the heat-flow equation (46) have to be solved simultaneously by a trial-and-error procedure.
A value v, is assumed. The calculation procedure described previously is carried out to determine a temperature ratio ®

corresponding to the assumed o,.
value.

The calculation has to be repeated until the determined ® value matches the prescribed
This calculation has to be carried out stepwise for the distances 2, s, 73, . -

In some cases heat may be transferred to the surface of the profile by radiation and may flow along the wall of the body

by conduction. Then an equation which takes these processes into account has to replace the equation (54).

The determi-

nation of the coolant flow velocity ., which results in & prescribed blade surface temperature, may be determined in the same
way as was just described. The procedure, however, becomes rather tedious in this case.

REFERENCES

1. Eckert, E.: Die Berechnung des Warmellbergangs in der laminaren
Grenzschicht umstrdmter Xdrper. VDI Forschungsheft 416,
Bd. 13, Sept.-Oct., 1942.

2. von Kérmgn, Th.: On Laminar and Turbulent Friction.
TM 1092, 1946.

3. Pohlhsusen, K.: Zur niherungsweisen Integration der Differential-
gleichung der laminaren Grenzchicht. Z.a.M.M., Bd. 1, Heft 4,
Aug. 1921, pp. 252-268.

4, Walz, A.: Application of Wieghardt’s Energy Theorem to Velocity
Profiles of One Parameter in Laminar Boundary Layers. Rep.
and Trans. No. 230, British M.A.P., Sept. 15, 1946.

5. Tetervin, Neal, and Lin, Chia Chiao: A General Integral Form of
the Boundary-Layer Equation for Incompressible Flow with an
Application to the Calculation of the Separation Point of Turbu-
lent Boundary Layers. NACA TN 2158, 1950.

6. Schlichting, H.: An Approximate Method for Calculation of the
Laminar Boundary Layer with Suction for Bodies of Arbitrary
Shape. NACA TM 1216, 1949.

7. Dorodnitzyn, A.: Laminar Boundary Layer in Compressible Fluid.
Comptes Rendus, vol. XXXIV, no. 8, 1942, pp. 213-219.

8. Dienemann, W.: Calculation of the Thermal Boundary Layer of a
Body in Incompressible Laminar Flow. Jour. Aero. Sei., vol.
18, no. 1, Jan. 1951, pp. 64-65.

9. Goland, Leonard: A Theoretical Investigation of Heat Transfer in
the Laminar Flow Regions of Airfoils. Jour. Aero. Sci., vol. 17,
no. 7, July 1950, pp. 436-440.

10. Yuan, Shao Wen: Heat Transfer in Laminar - Compressible
Boundary Layer on a Porous Flat Plate with Fluid Injection.
Jour. Aero. Sci., vol. 16, no. 12, Dec. 1949, pp. 741-718.

NACA

11. Schuh, H.: Boundary Layers of Temperature. Reps. & Trans.
No. 1007, AVA Monographs, British M. A. P., Apr. 15, 1948,

12. Seban, R. A., Drake, R. M., and Levy, 8.: Heat Transfer to Lami-
nar Boundary Layers Under Variable Free Stream Pressure
Conditions. Prog. Rep. No. 1, ser. 1, issue 1, Eng. Dept., Univ.
Calif. (Berkeley), Oct. 12, 1950. (Contract AF-33(038)-12041,
TCB-96439.)

13. Chapman, Dean R., and Rubesin, Morris W.: Temperature and
Velocity Profiles in the Compressible Laminar Boundary Layer
with Arbitrary Distribution of Surface Temperature. Jour.
Aero. Sci., vol. 16, no. 9, Sept. 1949, pp. 547-566.

14. Eckert, E. R. G.: Heat Transfer and Temperature Profiles in
Laminar Boundary Layers on a Sweat-Cooled Wall, Tech.
Rep. No. 5646, Air Materiel Command, Nov. 3, 1047.

15. Brown, W. Byron: Exact Solutions of the Laminar Boundary
Layer Equations for a Porous Plate with Variable Fluid Proper-
ties and a Pressure Gradient in the Main Stream. A.8.M.E.
Proc. First U. 8. Nat. Cong. Appl. Mech., pub. by A.S.M.E,,
1952, pp. 843-852.

16. Hartree, D. R.: On an Equation Occurring in Falkner and 8kan’s
Approximate Treatment of the Equations of the Boundary
Layer. Proc. Cambridge Phil. Soc., vol. 33, pt. 2, Apr. 1937,
pp. 223-239.

17. Katzoff, 8., Finn, Robert S., and Laurence, James C.: Interference
Method for Obtaining the Potential Flow Past an Arbitrary
Caseade of Airfoils. NACA Rep. 879, 1947. (Supersedes
NACA TN 1252.)

18. Eckert, E. R. G., and Esgar, Jack B.: Survey of Advantages and
Problems Associated with Transpiration Cooling and Tilm
Cooling of Gas-Turbine Blades. NACA RM E60K15, 1961,



LAMINAR HEAT TRANSFER AROUND POROUS CYLINDHRS OF ARBITRARY CROSS SECTION 359
TABLE I—STAGNATION POINT VALUES FOR FLOW BOUNDARY LAYER
5 5a
Vudi A Usa 5 5 N fa Uud
— 0, 4099 1. 0000 0. 0001 0. 1667 0. 3333 4. 0000 0. 5000 —2. 9988
—.4 0.78 . 0008 . 1614 . 3399 4 1059 . 4336 —2. 4783
—.3 . 6065 . 01935 . 1587 . 3452 4. 2029 . 3820 —1.9145
—.2 . 486 . 0345 . 1532 . 3488 4. 2768 . 3471 —1. 3055
-1 . 411 . 06225 . 1509 . 3510 4. 3260 . 3257 —0. 6627
0 . 359 . 0715 . 1492 . 3526 4. 3633 3110 0
. 06 . 320 . 0812 . 1484 . 3533 4. 3800 . 3050 . 3380
.1 . 3075 . 09025 . 1475 . 3541 4. 4007 . 2066 . 6780
.2 . 279 . 1106 . 1466 . 3550 4. 4216 . 2888 1. 3643
.3 . 242 . 130 . 1453 . 3561 4. 4508 2785 2. 0647
.4 . 225 . 161 . 1447 . 3566 4. 4644 2739 2, 7643
.5 . 208 . 1718 . 1441 . 3571 4, 4781 2692 2. 4698
.6 . 1835 . 19175 .1433 . 3579 4. 4976 . 2627 4. 1870
7 . 172 . 213 . 1429 . 3582 4. 5066 . 2596 4. 8985
.8 . 161 . 234 . 1425 . 3585 4. 5158 . 2566 5. 6140
.9 . 151 . 255 . 1421 . 3588 4. 5250 . 2539 6. 3336
1.0 . 142 . 276 . 1418 . 3591 4. 5324 . 2515 7. 0522
1.1 . 135 . 2975 . 1418 . 3593 4. 5374 . 2497 7. 7684
12 .128 . 3195 . 1413 . 3595 4. 5442 . 2478 8. 4926
13 .123 . 341 . 1411 . 3507 4. 5492 . 2464 9, 2133
L4 . 114 . 362 . 1408 . 3599 4. 5561 . 2449 9. 9432
15 . 113 . 384 . 1408 . 3600 4. 5568 . 2439 10. 6534
1.6 . 107 . 405 . 1408 . 3602 4. 5618 . 2424 11. 3798
1.7 . 101 . 426 . 1403 . 3604 4 5688 . 2406 12. 1169
]
TABLE II—STAGNATION POINT VALUES FOR THERMAL BOUNDARY LAYER
Pr=0.7 Pr=1 Pr=2 Pr=10
Vidy
K e 5 4 i P K Sue f K e 2
0 1,80 | 0.3888 © 1.56 | 0.3140 ® 1.2 0. 2042 © 0.66 | 0. 0742 ®
0. 05 1.76 .3040 | 4.40 1. 54 . 3371 3. 610 1. 215 .2986 | 2 5448 .78 L1207 | 1.317
.1 1.72 .4142 | 2555 155 .8477 | 2113 1.26 . 2616 1. 607 .94 . 1773 1. 081
.2 1.74 . 4291 1 629 158 .3808 | 1.408 | 135 . 3172 1.198
.3 1. 74 L4518 | 1338 1.61 L4124 | 1.233 1.43 .3664 | 1.081
.4 1. 74 . 4690 1. 228 1. 64 . 4371 1142 | 150 . 4027 1. 053
.5 1.74 .4869 | 1.158 | 166 .4607 | 1.096 1. 57 . 4338 1. 0325
.6 176 . 4995 1. 116 1. 68 . 4783 1. 068
.7 178 . 5101 1087 | 1.70 . 4933 1. 053
.8 179 .5208 | 1.068 | L72 . 5066 1. 040
.0 1. 80 . 5205 L056 | 174 .5174 | 1032
10 1. 80 . 5371 1.048 | 176 . 5266 1. 025
L1 184 . 5444 1. 038
12 184 .5488 | 1.037
1.3 1 84 .5624 | 1.028
14 1. 85 . 5569 1024
15 185 .5608 | 1.021
1.6 185 .5667 | 1.018
17 1. 85 .5697 | 1017







